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Diophantine m-tuples

LIntrctducticnn to Diophantine m-tuples

Why we study Diophantine m-tuples?
Because they ...

P involve mathematical problems that are easy to state but
difficult to solve.

P> take us from elementary number theory to advanced areas.

» are the combination of accessibility and depth is what makes
them so attractive to study.

C.F. Gauss: " If mathematics is the queen of sciences, then number
theory is the queen of mathematics.”
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Diophantine m-tuples

LIntl'ctducticnn to Diophantine m-tuples

The set of m (distinct) non-zero integers {a1, az,...,am} is
called a Diophantine m-tuples if

a;aj+1:X5:D,X;j€Z

forall 1<i<j<m.

Examples:

» Diophantus (3rd century): {%, %, %, %

1038 L (7)1 17 . (9\' 1 105 (19Y?

16 16 ~ \16/) 16 4 ~ \8/ 16 16 ~ \16/ ’

33 17, (25)° 38 105 . (61)\* 17 105 ., (43)?

6 4 ~ \8/)’'16 16 ~ \16/) 4 16 ~ \8/)
» Fermat (17th century): {1,3,8,120}

1341 = 22,1.8+1 = 32,1-1204+1 = 11%,3-8+1 = 5°,3-120+1 = 19°,8-120+1 = 312

427



Diophantine m-tuples

LIntrctducticnn to Diophantine m-tuples

» Remark: Diophantine m-tuples can be observed in:
- any commutative ring with unity
- in the field of rational numbers Q / rational Dioph. m-tuples

> Problem: How large these sets can be?

> Answer: Depends on the ring!
Examples:
{1,3,8,120} in Z
55 32 180 665 32131, ()
{4,7 +3v/5,7 — 3v/5,50 + 221/5,50 — 221/5} in Z[/5]
In the ring of integers, the problem is solved.
Here we deal with Diop. m-tuples in Z, i.e. with positive elements
(in N).
(The only Diophantine m-tuple/pair with mixed signs is {—1,1}. )
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Diophantine m-tuples

LIntroduction to Diophantine m-tuples
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Diophantine m-tuples
Llntroduction to Diophantine m-tuples
LOn Diophantine pairs

On Diophantine pairs

There are infinitely many Diophantine pairs in N!

Example:

{1,r> =1} and {r — 1, r + 1} are Diophantine pairs (r > 1)
(because the product of these two numbers increased by 1 is r2.)

Moreover, for any a € N and
b=k%*a+2k, k€N,

{a, b} is a Diophantine pair. Note that ab + 1 = (ka & 1).
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Diophantine m-tuples
LIntl'ctducticnn to Diophantine m-tuples

LOn Diophantine triples

On Diophantine triples

There are infinitely many Diophantine triples in N!

Example:

{k—1,k+ 1,4k} a Diophantine triple for any integer k > 1.
Indeed,

(k—=1)(k+1)+1 = k%, 4k(k—1)+1 = (2k—1)?, 4k(k+1)+1 = (2k+1)2.

Problem: In how many ways we can extend a given Diophantine
pair {a, b} to a Diophantine triple {a, b,c}?
Answer: There are infinitely many ¢’s!
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Diophantine m-tuples
LIntl'ctducticnn to Diophantine m-tuples

LOn Diophantine triples

Assume that {a, b} is a Diophantine pair and ab+1=r? r € N,
> |. step: At least one extension of the pair is easy to find!

{a, b, c} is a Diophantine triple for

c=a+b+2r or c=a+b—2r.
Let's check!
ala+b+2r)+1=a’+ab+2ar+1=2a’+r>+2ar=(axr)

Analogously,
b(a+b+2r)+1=(b=*r)%

(Caution! a+ b+ 2r is always a good extension, while a+ b — 2r can be
0.

WLOG, a < b< c and {a,b,a+ b+ 2r} is called regular Dioph.
triple.
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Diophantine m-tuples
LIntrctducticnn to Diophantine m-tuples
LOn Diophantine triples

> |l|. step: Let’'s find some more extensions!
Assume that a < b, ab+ 1 = r2. We want to find ¢ > b such that

ac—l—l—s bc+1—t

for some s, t > 0. By eliminating ¢, we obtain the Diophantine
equation
— bs?> =a—b.

Multiplying both sides by a, we get
(at)? — (ab)s® = a(a — b). (1)
This equation is of the form
X2 - DY? =N, (2)

where D > 0 and D # 0, and is better known as Pellian or
generalized Pell’s equation.
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Diophantine m-tuples
LIntrctducticnn to Diophantine m-tuples

LOn Diophantine triples
Pell’s equation is an equation of the form
X?-DY?=1. (3)

Pell's equation has infinitely many solutions (for D € N, D # [0).
Pellian equation (2) might not have solutions, but if it does, it
has infinitely many solutions.
Assume that:
- (X1, Y1) e N?isasol. of (2), X2 —DYZ2 =N
-(U,V)eN2isasol of (3), U~ DV? =1
- (X2, Ya) given by Xo + VDY, = (X1 + VDY1)(U + VDV).
(X2, Y2) is a solution of (2):
X2 — DY} (X2 + VDY2)(Xo — VDY>)
= (X1 +VDY)(U+VDV)(X1 —VDY1)(U—-VDV)
= (X - DY?)(U?* - DV?)
N-1=N

Pell's eq. has infinitely many solutions =
Pellian eq. has infinitely many solutions (if it is solvable). 11/27



Diophantine m-tuples
LIntrctducticnn to Diophantine m-tuples

LOn Diophantine triples

Is our equation (1)
T2 — (ab)s*> = a(a—b), T := at

solvable in T and s? YES!
This equation has a solution that arises from the regular expansion
c=a+b+2r!
Recall that ac +1 = (a+r)?, bc+1 = (b+r)2 So,
—— —~—

=s =t
(T1,s1) = (a(b+r),a+ r) is a solution of (1).
If (U, V) is a solution of X? — (ab)Y? = 1, then
(a(b+ r) + Vab(a+ r))(U+VabV) = To + Vabs;

is an another solution of (1).
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Diophantine m-tuples
LIntrctducticnn to Diophantine m-tuples

LOn Diophantine triples

We have a new extension of Diophantine pair {a, b}:

$-1_ ((a+r)U+a(b+r)V)>—1

a a

Cy =

if co € N. Since
ss—1=r’U?-1=(ab+1)U?-1=0U?>-1 (mod a)

and
U2—1=2abV?>=0 (mod a),

we have s2 — 1 =0 (mod a).
Pell's eq. has infinitely many solutions —>
Dioph. pair has infinitely many extensions!

Are these all possible extensions? We cannot say they are!
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Diophantine m-tuples
LIntl'ctducticnn to Diophantine m-tuples

LOn Diophantine quadruples

On Diophantine quadruples

There exist infinitely many Diophantine quadruples!
Examples:

{k,k 42,4k + 4,4(k + 1)(2k + 1)(2k + 3)}, k>1

{Fan, Fon+2, Fanta,4Font1Fant2Fants}, n > 0.

(Generalizations of Fermat's quadruple {1, 3,8,120}.)
More general, if the sequence (g,) is defined as:

80 =0,81=1,8n=pgn-1—8n-2, 22,
where p > 2 is an integer, then the set
{&n, gnt2, (P £ 2)gn+1,48n+1((P £ 2)g2n+1 F 1)}
had the property of Diophantus.(p = 2,3 give the previous sets.)
{P2n, Pani2,2P2p, 4Q2nPapn 1 @2n i1},
{P2n, P2ni2,2P2n42,4P2n11Qant1 @2}
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Diophantine m-tuples
LIntl'ctducticnn to Diophantine m-tuples

LOn Diophantine quadruples

What can we say about the extensions of a Diophantine pair or
triple to a Diophantine quadruple? It is always possible!

Theorem 1 (Euler,18th century)

{a,b,a+b+2r,4r(a+r)(b+r)}

is a Diophantine quadruple, where ab + 1 = r?.

Theorem 2 (Arkin, Hogatt and Strauss, 1979)

{a,b,c,a+ b+ c+ 2abc + 2rst} (4)

is a Diophantine quadruple, where ab+1 = r?, ac+1 = s?,
bc+1 = t2.

(4) is called regular quadruple
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Diophantine m-tuples
LIntl'ctducticnn to Diophantine m-tuples

LOn Diophantine quadruples

Extending problem: {a, b,c} — {a, b, c,d}
<= determining an integer triple (x,y, z) such that

ad+1=x2 bd+1=y? cd+1=2°

By eliminating d, the previous equations reduce to a system of
Diophantine equations:

ay? — bx> =a— b, (5)

az’ —cx®=a—c, (6)

i.e. to a system of Pellian equations:

These systems of the form are not easy to solve!
16 /27



Diophantine m-tuples
LIntrctducticnn to Diophantine m-tuples

LOn Diophantine quadruples

Solving simultaneous Pellian equations
Application of

Baker's theory on linear forms in logarithms of algebraic numbers

(for specific values of a, b and c).
A linear form in logarithms of algebraic numbers is an expression of

the form

N=biloga; + -+ bylogap,
where by, ..., b, are rational numbers and a4, ..., a, are algebraic
numbers.

Baker's result says that A cannot be very close to zero and give an
explicit lower bound on |A|. So there exists a computable effective
constant C > 0 such that

|A] > exp(—C).
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Diophantine m-tuples
LIntrctducticnn to Diophantine m-tuples

LOn Diophantine quadruples
Connection between Baker’s result and the solution to a
system of Pellian eq.

The solutions to each Pellian equation in x (common unknow) are
approximately equal to

~va™ and 68", m,n € Ny,

where a, 8,7, 0 are quadratic irrationalities (i.e. algebraic
numbers). Roughly, solving the system is reduced to searching for
the numbers m and n such that
~ya™ = 66",
By taking logarithm,
v

mloga—nlogﬁ+log5 ~ 0.

linear form in logs of algebraic numbers

Baker's result gives and an explicit upper bound for m and n,

max{m,n} <M 1827



Diophantine m-tuples
LIntrctducticnn to Diophantine m-tuples

LOn Diophantine quadruples

Problem! The upper bound is often huge (possibly in the range of
10%° or more)!

Solution:

Baker-Davenport’s reduction based on the expansion into a
continued fraction. This looks like an approximation of a real
number ¢ by a rational (a convergent of continued fraction of ¢).

Remark: Another way to obtain an upper bound on the solutions
is by using a result on simultaneous approximation of square roots
(so-called hypergeometric method from Diophantine
approximations). Namely, if we assume that system (5),(6) has
some relatively large solution x, y, z, then y/x and z/x represent
very good rational approximations (with a common denominator)

of the irrational numbers y/a/c and /b/c.
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Diophantine m-tuples
LIntrctducticnn to Diophantine m-tuples

LOn Diophantine quadruples

Can we say something about the extension of a Diohantine triple
to a quadruple? It is always possible (by regular extension), but...

Conjecture 1

If {a,b,c,d} is a Diophantine quadruple and d >
max{a, b, c}, then

d =a+ b+ c+ 2abc + 2rst.

Conjecture 1 implies that there is no Diophantine quintuple.
Many results support Conjecture 1. Pioneering works:
» Baker and Davenport (1969): Fermat's triple {1, 3,8} can be
extended uniquely with d = 120 (i.e. to a regular quadruple)
» Dujella (late 1990s): Families of triples of the form
{k—1,k+ 1,4k} and {F2k, F2k + 2, F2k + 4} extend

uniquely. 20,21



Diophantine m-tuples

LIntl'ctducticnn to Diophantine m-tuples

LOn Diophantine quadruples

Our Main Learning Objectives

Goals related to expanding Diophantine pairs to triples, and
triples to quadruples:

>
>
>

Solve Pell’'s equation using continued fractions.
Solve Pellian equations.

Apply Baker's theory on linear forms in logarithms of algebraic
numbers.

Use the Baker—Davenport reduction method, which involves
continued fractions.
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Diophantine m-tuples
Llntroduction to Diophantine m-tuples

LOn Diophantine quintuples

On Diophatine quintuples

Conjecture 2 (Diophantine quintuple conjecture)

No Diophantine quintuple (in 7,) exists!

» Euler added the fifth (rational) element to Fermat's quadruple

777480

8288641 b

» Dujella generalized Euler's construction to an arbitrary
Diophantine quadruple {a, b, c,d}:

(a+ b+ c+d)(abed + 1) + 2abc + 2abd + 2acd + 2bcd & 2rirar3rarsre
(abed — 1)

{1,3,8,120,

where
ab+1:r12,ac+l:r22,ad+1:r§, bc+1:rf, bd+1:r52, cd+l:r62.
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Diophantine m-tuples
LIntl'ctducticnn to Diophantine m-tuples

LOn Diophantine quintuples

» In 2004 Dujella made an important breakthrough showing
that a Diophantine sextuple does not exist and that there are
only finitely many Diophantine quintuples.

» The bound for the number of possible Diophantine quintuples
has been improved by several authors

Theorem 3 (He, Togbé and Ziegler, 2019)

There does not exist a Diophantine quintuple in Z.
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Diophantine m-tuples
LIntmduction to Diophantine m-tuples
LD(n)-m—tuples
One of the generalizations of Diophantine sets:
» Replace the unity with an arbitrary element n € R.

A Diophantine m-tuple with property D(n) or simply
D(n)-m-tuple in R is a set {a1,...,am} C R\{0} such that

ajaj + n =0 (is a square of an element of R),

for1<i<j<m.

An interesting fact about D(n)-quadruples:
» In some rings the existence of D(n)-quadruples is related to
the representation of n by the binary quadratic form x? — y?,
i.e.

a D(n)-quadruple exists < n is a difference of squares ]
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Diophantine m-tuples
LIntl'ctducticnn to Diophantine m-tuples
- D(n)-m-tuples

a D(n)-quadruple exists < n is a difference of squares

Confirmation of this claim:
> 7*
> Z[i]*
> ring of integers of a real quadratic field Q(v/d) for a wide
class of positive integers d
> ring of integers of imaginary quadratic field Q(v/—3)* and
Q(v-2)*
> ring of integers of the pure cubic field Q(+/2)
> ring of integers of the biquadratic number field Q(v/2, v/3)
* - up to finitelly many exceptions, *-partially proved
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Diophantine m-tuples
LIntl'ctducticnn to Diophantine m-tuples
- D(n)-m-tuples

But (1), in certain rings of the form Z[v/4k + 2| there are
elements n which are not difference of two squares but there
exist a D(n)-quadruple. For instance,

{19 + 6V/10, —8 + 61/10, 35 + 181/10, 35 + 42V/10}

is a D(26 + 64/10)-quadruple and n = 26 + 61/10 cannot be
represented as a difference of two squares in Z[v/10]

(Chakraborty, Gupta, Hoque, 2023)

Nevertheless, we think it makes sense to investigate the connection
between “D(n)-quadruples and differences of squares” in some
other rings.
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Diophantine m-tuples

LIntrctducticnn to Diophantine m-tuples
- D(n)-m-tuples

a D(n)-quadruple exists < n is a difference of squares

The verification procedure consists of the following steps:

>

| 2

| 2

Describe the set S of all elements n € R that can be
represented as a difference of two squares

Show the non-existence of a D(n)-quadruple if n & S using
congruence types of quadruples

Construct effectively, via polynomial formulas, a
D(n)-quadruple for each n € S. For example,

{m(3k +1)2+2k, m(3k +2)® + 2k +2,9m(2k + 1)* + 8k + 4}
has the D(2m(2k + 1) + 1)-property.

(Based on the idea that {a,b,a+ b+ 2x,a+ 4b+ 4x} has a
D(n)-property iff a(a+4b+4x) +n =, where ab+n = x2.)
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