
Diophantine m-tuples

Diophantine m-tuples

Zrinka Franušić
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Diophantine m-tuples

Introduction to Diophantine m-tuples

Why we study Diophantine m-tuples?
Because they ...

▶ involve mathematical problems that are easy to state but
difficult to solve.

▶ take us from elementary number theory to advanced areas.

▶ are the combination of accessibility and depth is what makes
them so attractive to study.

C.F. Gauss: ”If mathematics is the queen of sciences, then number
theory is the queen of mathematics.”
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Introduction to Diophantine m-tuples

The set of m (distinct) non-zero integers {a1, a2, . . . , am} is
called a Diophantine m-tuples if

aiaj + 1 = x2ij = □, xij ∈ Z

for all 1 ≤ i < j ≤ m.

Examples:
▶ Diophantus (3rd century): { 1

16 ,
33
16 ,

17
4 ,

105
16 }

1

16
·
33

16
+ 1 =

(
17

16

)2

,
1

16
·
17

4
+ 1 =

(
9

8

)2

,
1

16
·
105

16
+ 1 =

(
19

16

)2

,

33

16
·
17

4
+ 1 =

(
25

8

)2

,
33

16
·
105

16
+ 1 =

(
61

16

)2

,
17

4
·
105

16
+ 1 =

(
43

8

)2

.

▶ Fermat (17th century): {1, 3, 8, 120}
1·3+1 = 22, 1·8+1 = 32, 1·120+1 = 112, 3·8+1 = 52, 3·120+1 = 192, 8·120+1 = 312.
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Introduction to Diophantine m-tuples

▶ Remark: Diophantine m-tuples can be observed in:
- any commutative ring with unity
- in the field of rational numbers Q / rational Dioph. m-tuples

▶ Problem: How large these sets can be?

▶ Answer: Depends on the ring!
Examples:
{1, 3, 8, 120} in Z
{ 5
36 ,

5
4 ,

32
9 ,

189
4 , 665

1521 ,
3213
676 } in Q

{4, 7 + 3
√
5, 7− 3

√
5, 50 + 22

√
5, 50− 22

√
5} in Z[

√
5]

In the ring of integers, the problem is solved.
Here we deal with Diop. m-tuples in Z, i.e. with positive elements
(in N).
(The only Diophantine m-tuple/pair with mixed signs is {−1, 1}. )
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Introduction to Diophantine m-tuples

On Diophantine pairs

On Diophantine pairs

There are infinitely many Diophantine pairs in N!
Example:
{1, r2 − 1} and {r − 1, r + 1} are Diophantine pairs (r > 1)
(because the product of these two numbers increased by 1 is r2.)

Moreover, for any a ∈ N and

b = k2a± 2k, k ∈ N,

{a, b} is a Diophantine pair. Note that ab + 1 = (ka± 1)2.
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Introduction to Diophantine m-tuples

On Diophantine triples

On Diophantine triples

There are infinitely many Diophantine triples in N!
Example:
{k − 1, k + 1, 4k} a Diophantine triple for any integer k > 1.
Indeed,
(k−1)(k+1)+1 = k2, 4k(k−1)+1 = (2k−1)2, 4k(k+1)+1 = (2k+1)2.

Problem: In how many ways we can extend a given Diophantine
pair {a, b} to a Diophantine triple {a, b, c}?
Answer: There are infinitely many c’s!
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Introduction to Diophantine m-tuples

On Diophantine triples

Assume that {a, b} is a Diophantine pair and ab + 1 = r2, r ∈ N.
▶ I. step: At least one extension of the pair is easy to find!

{a, b, c} is a Diophantine triple for

c = a+ b + 2r or c = a+ b − 2r .

Let’s check!

a(a+ b ± 2r) + 1 = a2 + ab ± 2ar + 1 = a2 + r2 ± 2ar = (a± r)2.

Analogously,
b(a+ b ± 2r) + 1 = (b ± r)2.

(Caution! a+ b + 2r is always a good extension, while a+ b − 2r can be

0.)

WLOG, a < b < c and {a, b, a+ b + 2r} is called regular Dioph.
triple.
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Introduction to Diophantine m-tuples

On Diophantine triples

▶ II. step: Let’s find some more extensions!

Assume that a < b, ab + 1 = r2. We want to find c > b such that

ac + 1 = s2, bc + 1 = t2,

for some s, t > 0. By eliminating c , we obtain the Diophantine
equation

at2 − bs2 = a− b.

Multiplying both sides by a, we get

(at)2 − (ab)s2 = a(a− b). (1)

This equation is of the form

X 2 − DY 2 = N, (2)

where D > 0 and D ̸= □, and is better known as Pellian or
generalized Pell’s equation.
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Introduction to Diophantine m-tuples

On Diophantine triples

Pell’s equation is an equation of the form

X 2 − DY 2 = 1. (3)

Pell’s equation has infinitely many solutions (for D ∈ N, D ̸= □).
Pellian equation (2) might not have solutions, but if it does, it
has infinitely many solutions.
Assume that:
- (X1,Y1) ∈ N2 is a sol. of (2), X 2

1 − DY 2
1 = N

- (U,V ) ∈ N2 is a sol. of (3), U2 − DV 2 = 1
- (X2,Y2) given by X2 +

√
DY2 = (X1 +

√
DY1)(U +

√
DV ).

(X2,Y2) is a solution of (2):

X 2
2 − DY 2

2 = (X2 +
√
DY2)(X2 −

√
DY2)

= (X1 +
√
DY1)(U +

√
DV )(X1 −

√
DY1)(U −

√
DV )

= (X 2
1 − DY 2

1 )(U
2 − DV 2)

= N · 1 = N

Pell’s eq. has infinitely many solutions =⇒
Pellian eq. has infinitely many solutions (if it is solvable). 11 / 27
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Introduction to Diophantine m-tuples

On Diophantine triples

Is our equation (1)

T 2 − (ab)s2 = a(a− b),T := at

solvable in T and s? YES!
This equation has a solution that arises from the regular expansion
c = a+ b + 2r !
Recall that ac + 1 = (a+ r︸ ︷︷ ︸

=s

)2, bc + 1 = (b + r︸ ︷︷ ︸
=t

)2. So,

(T1, s1) = (a(b + r), a+ r) is a solution of (1).
If (U,V ) is a solution of X 2 − (ab)Y 2 = 1, then

(a(b + r) +
√
ab(a+ r))(U +

√
abV ) = T2 +

√
ab s2

is an another solution of (1).
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Introduction to Diophantine m-tuples

On Diophantine triples

We have a new extension of Diophantine pair {a, b}:

c2 :=
s22 − 1

a
=

((a+ r)U + a(b + r)V )2 − 1

a
,

if c2 ∈ N. Since

s22 − 1 ≡ r2U2 − 1 = (ab + 1)U2 − 1 ≡ U2 − 1 (mod a)

and
U2 − 1 = abV 2 ≡ 0 (mod a),

we have s22 − 1 ≡ 0 (mod a).
Pell’s eq. has infinitely many solutions =⇒
Dioph. pair has infinitely many extensions!

Are these all possible extensions? We cannot say they are!
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Introduction to Diophantine m-tuples

On Diophantine quadruples

On Diophantine quadruples
There exist infinitely many Diophantine quadruples!
Examples:

{k , k + 2, 4k + 4, 4(k + 1)(2k + 1)(2k + 3)}, k ≥ 1

{F2n,F2n+2,F2n+4, 4F2n+1F2n+2F2n+3}, n ≥ 0.

(Generalizations of Fermat’s quadruple {1, 3, 8, 120}.)
More general, if the sequence (gn) is defined as:

g0 = 0, g1 = 1, gn = pgn−1 − gn−2, n ≥ 2,

where p ≥ 2 is an integer, then the set

{gn, gn+2, (p ± 2)gn+1, 4gn+1((p ± 2)g2n+1 ∓ 1)}
had the property of Diophantus.(p = 2, 3 give the previous sets.)

{P2n,P2n+2, 2P2n, 4Q2nP2n+1Q2n+1},
{P2n,P2n+2, 2P2n+2, 4P2n+1Q2n+1Q2n+2}

(Pn are Pell numbers, Q ′
n = 2Qn are Pell-Lucas numbers.)
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Introduction to Diophantine m-tuples

On Diophantine quadruples

What can we say about the extensions of a Diophantine pair or
triple to a Diophantine quadruple? It is always possible!

Theorem 1 (Euler,18th century)

{a, b, a+ b + 2r , 4r(a+ r)(b + r)}

is a Diophantine quadruple, where ab + 1 = r2.

Theorem 2 (Arkin, Hogatt and Strauss, 1979)

{a, b, c, a+ b + c + 2abc + 2rst} (4)

is a Diophantine quadruple, where ab+1 = r2, ac +1 = s2,
bc + 1 = t2.

(4) is called regular quadruple
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Introduction to Diophantine m-tuples

On Diophantine quadruples

Extending problem: {a, b, c} → {a, b, c , d}
⇐⇒ determining an integer triple (x , y , z) such that

ad + 1 = x2, bd + 1 = y2, cd + 1 = z2.

By eliminating d , the previous equations reduce to a system of
Diophantine equations:

ay2 − bx2 = a− b, (5)

az2 − cx2 = a− c , (6)

i.e. to a system of Pellian equations:

(ay)2 − (ab)x2 = a(a− b), (7)

(az)2 − (ac)x2 = a(a− c), (8)

These systems of the form are not easy to solve!
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Introduction to Diophantine m-tuples

On Diophantine quadruples

Solving simultaneous Pellian equations
Application of

Baker’s theory on linear forms in logarithms of algebraic numbers

(for specific values of a, b and c).
A linear form in logarithms of algebraic numbers is an expression of
the form

Λ = b1 logα1 + · · ·+ bn logαn,

where b1, . . . , bn are rational numbers and α1, . . . , αn are algebraic
numbers.
Baker’s result says that Λ cannot be very close to zero and give an
explicit lower bound on |Λ|. So there exists a computable effective
constant C > 0 such that

|Λ| > exp(−C ).
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Introduction to Diophantine m-tuples

On Diophantine quadruples

Connection between Baker’s result and the solution to a
system of Pellian eq.
The solutions to each Pellian equation in x (common unknow) are
approximately equal to

γαm and δβn, m, n ∈ N0,

where α, β, γ, δ are quadratic irrationalities (i.e. algebraic
numbers). Roughly, solving the system is reduced to searching for
the numbers m and n such that

γαm ≈ δβn.

By taking logarithm,

m logα− n log β + log
γ

δ︸ ︷︷ ︸
linear form in logs of algebraic numbers

≈ 0.

Baker’s result gives and an explicit upper bound for m and n,

max{m, n} ≤ M 18 / 27
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Introduction to Diophantine m-tuples

On Diophantine quadruples

Problem! The upper bound is often huge (possibly in the range of
1030 or more)!
Solution:
Baker-Davenport’s reduction based on the expansion into a
continued fraction. This looks like an approximation of a real
number ϕ by a rational (a convergent of continued fraction of ϕ).

Remark: Another way to obtain an upper bound on the solutions
is by using a result on simultaneous approximation of square roots
(so-called hypergeometric method from Diophantine
approximations). Namely, if we assume that system (5),(6) has
some relatively large solution x , y , z , then y/x and z/x represent
very good rational approximations (with a common denominator)
of the irrational numbers

√
a/c and

√
b/c .
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Introduction to Diophantine m-tuples

On Diophantine quadruples

Can we say something about the extension of a Diohantine triple
to a quadruple? It is always possible (by regular extension), but...

Conjecture 1

If {a, b, c , d} is a Diophantine quadruple and d >
max{a, b, c}, then

d = a+ b + c + 2abc + 2rst.

Conjecture 1 implies that there is no Diophantine quintuple.
Many results support Conjecture 1. Pioneering works:
▶ Baker and Davenport (1969): Fermat’s triple {1, 3, 8} can be

extended uniquely with d = 120 (i.e. to a regular quadruple)
▶ Dujella (late 1990s): Families of triples of the form

{k − 1, k + 1, 4k} and {F2k ,F2k + 2,F2k + 4} extend
uniquely.
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Introduction to Diophantine m-tuples

On Diophantine quadruples

Our Main Learning Objectives

Goals related to expanding Diophantine pairs to triples, and
triples to quadruples:

▶ Solve Pell’s equation using continued fractions.

▶ Solve Pellian equations.

▶ Apply Baker’s theory on linear forms in logarithms of algebraic
numbers.

▶ Use the Baker–Davenport reduction method, which involves
continued fractions.
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Introduction to Diophantine m-tuples

On Diophantine quintuples

On Diophatine quintuples

Conjecture 2 (Diophantine quintuple conjecture)

No Diophantine quintuple (in Z) exists!

▶ Euler added the fifth (rational) element to Fermat’s quadruple

{1, 3, 8, 120, 777480

8288641
}.

▶ Dujella generalized Euler’s construction to an arbitrary
Diophantine quadruple {a, b, c, d}:
(a+ b + c + d)(abcd + 1) + 2abc + 2abd + 2acd + 2bcd ± 2r1r2r3r4r5r6

(abcd − 1)2

where
ab + 1 = r21 , ac + 1 = r22 , ad + 1 = r23 , bc + 1 = r24 , bd + 1 = r25 , cd + 1 = r26 .
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Introduction to Diophantine m-tuples

On Diophantine quintuples

▶ In 2004 Dujella made an important breakthrough showing
that a Diophantine sextuple does not exist and that there are
only finitely many Diophantine quintuples.

▶ The bound for the number of possible Diophantine quintuples
has been improved by several authors

Theorem 3 (He, Togbé and Ziegler, 2019)

There does not exist a Diophantine quintuple in Z.
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Introduction to Diophantine m-tuples

D(n)-m-tuples

One of the generalizations of Diophantine sets:
▶ Replace the unity with an arbitrary element n ∈ R.

A Diophantine m-tuple with property D(n) or simply
D(n)-m-tuple in R is a set {a1, . . . , am} ⊂ R\{0} such that

aiaj + n = □ (is a square of an element of R),

for 1 ≤ i < j ≤ m.

An interesting fact about D(n)-quadruples:
▶ In some rings the existence of D(n)-quadruples is related to

the representation of n by the binary quadratic form x2 − y2,
i.e.

a D(n)-quadruple exists ⇔ n is a difference of squares
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Introduction to Diophantine m-tuples

D(n)-m-tuples

a D(n)-quadruple exists ⇔ n is a difference of squares

Confirmation of this claim:

▶ Z*
▶ Z[i ]*
▶ ring of integers of a real quadratic field Q(

√
d) for a wide

class of positive integers d

▶ ring of integers of imaginary quadratic field Q(
√
−3)* and

Q(
√
−2)*

▶ ring of integers of the pure cubic field Q( 3
√
2)

▶ ring of integers of the biquadratic number field Q(
√
2,
√
3)

* - up to finitelly many exceptions, *-partially proved
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Introduction to Diophantine m-tuples

D(n)-m-tuples

But (!), in certain rings of the form Z[
√
4k + 2] there are

elements n which are not difference of two squares but there
exist a D(n)-quadruple. For instance,

{19 + 6
√
10,−8 + 6

√
10, 35 + 18

√
10, 35 + 42

√
10}

is a D(26 + 6
√
10)-quadruple and n = 26+ 6

√
10 cannot be

represented as a difference of two squares in Z[
√
10]

(Chakraborty, Gupta, Hoque, 2023)

Nevertheless, we think it makes sense to investigate the connection
between “D(n)-quadruples and differences of squares” in some
other rings.
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Introduction to Diophantine m-tuples

D(n)-m-tuples

a D(n)-quadruple exists ⇔ n is a difference of squares

The verification procedure consists of the following steps:

▶ Describe the set S of all elements n ∈ R that can be
represented as a difference of two squares

▶ Show the non-existence of a D(n)-quadruple if n ̸∈ S using
congruence types of quadruples

▶ Construct effectively, via polynomial formulas, a
D(n)-quadruple for each n ∈ S . For example,
{m(3k +1)2+2k,m(3k +2)2+2k +2, 9m(2k +1)2+8k +4}
has the D(2m(2k + 1) + 1)-property.
(Based on the idea that {a, b, a+ b + 2x , a+ 4b + 4x} has a
D(n)-property iff a(a+4b+4x)+ n = □, where ab+ n = x2.)
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